2019年6月26日 星期三

人口統計變數為何無法做為控制變數?



控制變數這個問題許多人問過,首先回答一個問題,你知道什麼是控制變數嗎?為何研究要放控制變數呢?理由大多是別人有用,所以我也用,因此就造成了許多控制變數的誤用。


從理論上先瞭解性別,教育程度是名義及順序尺度,控制變數其實在統計上是回歸的偏相關,也是引數,回歸的基本假設是引數與因變數必需是線性相關,性別為類別變數,跑出的值是平均值差異,而非斜率,教育程度與Y不可能為線性關係,代入也不對。

而且控制變數是理論上要和Y有顯著相關的變數,但又不是研究的重點,所以分析完後,如果控制變數與Y不顯著,表示研究設控制變數是錯的。

引用文獻出處:
Use specific, well-explored theory to drivethe inclusion of controls, which goes beyond simple statements like, “previousresearchers used this control” or “this variable is correlated with myoutcomes.”  If you believe that a specific relationship may becontaminating your results, this may be justification for a control, but youshould explicit state why and defend this decision when describing yourmethods. 

Don’t control for demographic variables,e.g. race, gender, sex, age. For example, if you find a gender difference inyour outcome of interest, controlling for that variable may hide real variancein the outcome that could be explained by whatever real phenomenon is causingthat difference.  In my own research are, it is not uncommon to controlfor age when examining the effects of technology on outcomes of interest (e.g.learning).  But age does not itself cause trouble with technology;instead, underlying differences like familiarity with technology or comfortwith technology or other characteristics may be driving thosedifferences.  Simply controlling for age not only removes “real” variancethat should remain in the equation but also camouflages a real relationship ofinterest.

Richard, N. L. (2011). Stats and Methods Urban Legend 2: Control Variables Improve Your Study.
Paul, E. S., & Michael, T. B. (2011). Methodological Urban Legends: The Misuse of Statistical Control Variables. Organizational Research Methods, 14(2),287-305.



沒有留言:

張貼留言

EFA與CFA能否用相同樣本進行?

請問在 SEM 模型中,有一個潛變數要做 EFA, 請問可以用搜集到的所有樣本先做 EFA, 然後再用相同的這些樣本做 SEM 嗎?還是要用一些樣本做 EFA, 然後用總體中剩下的那部分樣本做 SEM ?